skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jared Rivera"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Although peridynamics is widely used to investigate mechanical responses in materials, the ability of peridynamics to capture the main features of realistic stress states remains unknown. Here, we present a procedure that combines analytic investigation and numerical simulation to capture the elastic field in the mixed boundary condition. By using the displacement potential function, the mixed boundary condition elasticity problem is reduced to a single partial differential equation which can be analytically solved through Fourier analysis. To validate the peridynamic model, we conduct a numerical uniaxial tensile test using peridynamics, which is further compared with the analytic solution through a convergence study. We find that, when the parameters are carefully calibrated, the numerical predicted stress distribution agrees very well with the one obtained from the theoretical calculation. 
    more » « less